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Preface 
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Avant completed It after Virginia took a much deserved promotion. 

Finally,  thanks go to my wife, Linda, and children,  Alex and 

Marcus,   for tolerating the many absences over the years  (contrary  to 
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Abstract 

Solutions were obtained for hypersonic flow over sharp cones at 

high angle of attack, which Include the viscous effects present In experi- 

ment. These solutions were obtained by Integrating the Navier-Stokes 

equations subject to a conical symmetry assumption. The Integration 

technique used was MacCormack's method with boundary conditions chosen to 

match available experiments. The experimental conditions were: 

(1) Those of Tracy for a 10° half angle cone at angles of attack of 0°, 

8°, 12°, 20°, and 24° in M - 7.95 flow at Re - A.2 x 105.  (2) Those of 

Stetson for a 5.6° half angle cone at 10° angle of attack in M = 14.2 

flow at Re - 7.9 x 10 .  (3) Those of McElderry for a 6° half angle cone 

at 12° angle of attack in M - 6.05 flow at Re - 1.5 x 10 . A physically 

based technique (normal stress damping) was demonstrated for controlling 

starting transients and for reducing or eliminating numerical oscilla- 

tions occurring at shock discontinuities during the Integration. 

The general features which appeared in experiment were shown to 

appear in the results of the integration, including the proper behavior, 

in laminar flow, of the viscous layer and the vortical singularity. The 

results agreed quite well with the experimental data of Tracy (hypersonic 

similarity parameter 7 »1) except for a discrepancy in pitot pressure 

in the viscous layer evident in a small region near the leeward center- 

line of the cone. The agreement with the experimental data (X - 3) of 

Stetson was less adequate. Surface pressure agreement in this Instance 

was quite reasonable. However, a somewhat thin lee side viscous layer 

resulted in a calculated bow shock wave position 27% closer to the cone 

surface at the lee centerline.  It was concluded that the lee side 

viscous layer discrepancies at both experimental conditions were 

xi 



primarily due to lack of any mechanism in the present  technique to model 

the non-conical flow near the nose of the cone.    A solution obtained Just 

upstream of the beginning of boundary layer transition at the experiment- 

al conditions of McElderry agreed well with experiment when conically 

projected far into the turbulent regime.    The adequacy of the conical 

symmetry assumption is therefore  indicated for  the turbulent regime on 

conical bodies. 

In summary,  the results show good agreement with experiment for 

values of the hypersonic similarity parameter  (x <. 1.0)  and less 

adequate agreement at higher X*    Angle of attack limitations encountered 

in previous inviscid cone flow calculations were not encountered in the 

present study. 

xii 



I. Introduction 

Supersonic flow about cones has been a subject of Interest to 

aerodynamlclsts for many years. Cones comprised one of the earliest 

attempts to streamline such Items as fuel tanks, weaponry, and fuse- 

lages, with locally conical nose shapes still In use on todayfe modern 

high-speed aircraft. The missile era has also seen the use of cones 

as a primary or partial shape for re-entry vehicles In current ICBMs. 

This study Is directed toward the latter application and Is In response 

to the need for more accurate aerodynamic prediction techniques In 

this area. 

The two primary elements which dictate the need for Increased 

prediction accuracy are the current high cost of wind tunnel testing 

and the difficulty of simulating the re-entry vehicle flight regime. 

The advent of the high-speed, large-capacity computer In recent years 

has opened up a means to reduce cost both through reducing unit compu- 

tational cost and through reducing the amount of experimental verifi- 

cation required during the systems acquisition process. The remaining 

task Is the research necessary to develop the required numerical tech- 

niques and the verification of these techniques through comparison of 

numerical results with those obtained experimentally. 

Particular solutions to the complete governing equations of fluid 

flow are available for very few sets of boundary and Initial conditions. 

It has therefore been necessary In nearly all cases to reduce the 

complexity and scope of the equations through neglect of the viscous 

effects and/or by reduction of the number of dimensions to be consid- 

ered In the problem. Prior to 1973, most attempts to solve the flow 



about conical bodies used Invlscld forms of the governing equations. 

The two primary difficulties that have been encountered with these solu- 

tions are the failure of the Invlscld equations to model properly the lee 

side flow In which viscous effects predominate and the occurrence of 

numerical Instabilities which are encountered at high angle of attack. 

If the goal of reducing the amount of experimental verification Is to be 

attained, then Improved numerical techniques must be developed to over- 

come these difficulties. The present study will present and compare with 

experiment a technique which resolved both of these difficulties. 

This report contains first a brief description of the developments 

In the solution of flow over conical bodies. The solution approach used 

In the present ..tudy Is then presented In four parts.  First a discussion 

of the general features of conical flows Is given, with particular 

emphasis on the circular sharp cone at angle of attack. The governing 

equations are then presented and changes due to the conical symmetry 

assumption are discussed. The application of MacCormack's numerical 

Integration scheme to the equations Is given In the third r.art.  Fart 

four describes the details of the finite difference mesh and the mannet 

In which the Integration was accomplished. The results of the numerical 

Integration are then compared with experiment for selected conditions 

for which previously published experimental data were available. 

Conclusions drawn from these comparisons are presented to complete the 

study. 



II.  Background 

The history of the solution of supersonic cone flows has been 

greatly affected by and dependent on the development of high-speed 

digital computers. It Is generally agreed that the Navler-Stokes 

equations In their complete form provide sufficient knowledge of the 

physics of the flow for non-reacting gases. However, the scope and 

conplexlty of these partial differential equations required great 

simplification of the set In order to obtain solutions prior to the 

development of the digital computer. These simplifications led to 

poor agreement of the solution with experiment except for restricted 

conditions. Although the restrictions have been considerably relaxed 

In more recent studies, a fully three dimensional solution of the 

complete governing equations Is still not practical for general config- 

urations.  This section will provide a brief description of the more 

Important supersonic cone flow solutions published prior to the 

present study. 

The hit.lory of solution techniques for supersonic cone flow began 

In 1933 with the publication by Taylor and Maccoll (Ref 1) of an 

ordinary differential equation solution for axlsymmetrlc Invlscld flow 

about a sharp cone. The next significant event occurred In 1947 with 

publication of tabulated Taylor-Maccoll solutions by Kopal and Asso- 

ciates (Ref 2). These tabulations were extended to Include angle of 

attack In Refs 3 and 4. Ferrl (Ref 5) obtained first order solutions 

for cones at small angle of attack In which he noted the properties of 

the vortical layer about the cone and showed the existence of a vortical 

singularity In the lee side flow. With this publication by Ferrl, all 
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Important features (except for the lee side Imbedded shock waves) of 

the inviscid conical flow fields were known and defined.  Since Ferrl's 

solution was demonstrated only for a/6 £ 1.6, It remained then to 

Increase the angle of attack for which a solution could be obtained and 

to account for Imbedded shock waves and viscous effects present In 

experiment. 

improvement of the digital computer In the middle 1960's allowed 

the solution of the non-linear Euler equations In more complete form. 

Babenko, et al (Ref 6) obtained smooth-body solutions for the inviscid 

Euler equations In supersonic flow without further simplification. 

This work Is an early example of the use of finite difference tech- 

niques to Integrate the three-dimensional flow equations In their non- 

linear form. Another example of this approach Is the work of 

Bohachevsky and Rubin (Ref 7). 

The finite difference scheme used In the present work can be 

traced back to that of Lax and Wendrof f (Ref 8). This second order 

scheme, when applied to the flow equations case In conservation law 

form allows shock discontinuities to form without special provisions 

during the Integration process. MacCormack's (Ref 9) variant of the 

Lax-Wendroff scheme as applied by Kutler (Ref 10) extended the angle of 

attack range for which Inviscid sharp cone flows could be obtained. 

Further applications (Refs 11-13) of this technique to Inviscid flows 

were made by Kutler, et al to allow for real gas effects, varying 

geometries, and passing through shock fronts. However, the Inaccuracies 

due to neglect of viscous effects were not effectively dealt with until 

the work of Lin and Rubin (Refs 14,13) and Lubard and Helllwell (Ref 16). 

Lin and Rubin solved a boundary layer equation set modified to account 
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for centrifugal force and cross flow diffusion In the weak Interaction 

region and a parabolic set In the hypersonic tip region to obtain 

solutions including viscous effects up to twice the cone half angle. 

However, the former approach requires input of surface pressure from 

experiment or other source. Lubard and Helllwell utilized an implicit 

finite difference technique similar to that of Lin and Rubin to solve 

the flow equations subject to a parabolic assumption for the stream- 

wise shear stress terms. This space marching technique required an 

accurate initial surface for the integration to proceed. The lack of 

such a surface required that the Integration be started at zero angle 

of attack and that the angle of attack be gradually Increased until 

the desired value is reached.  The solution must then be carried far 

enough downstream for relaxation of the effects of this procedure to 

occur.  The comparison with experiment for this technique at a given 

physical point on the cone surface is therefore uncertain. 

As noted in this brief survey, solutions of viscous flow over 

cones have only recently been attempted (1973). The present study 

seeks to Illustrate a tecanlque wh .ch Includes viscous effects in cone 

flow calculations and removes limitations present in the Invlscld 

calculations. The details of this technique are given in the 

following section. 



III. Approach 

This section presents the details of the solution approach used In 

the present study. A brief description of the general features of coni- 

cal flow Is presented In part one. This Is followed by a discussion In 

part two of the governing equations of fluid flow and the changes In 

these equations which result from the conical symmetry assumption.  Part 

three describes the application of MacCormack's numerical Integration 

scheme to the equation set obtained In part two. Part four then gives 

the details of the solution procedure. 

Description of Conical Flow 

As noted In the Introduction to the present study, supersonic flow 

about conical bodies has been of considerable Interest to aerodynamicls ts. 

Supersonic Invlscld conical flows appear at first Inspection to be fully 

three-dimensional. However, they are In reality only two dimensional 

with no gradients In any quantity occurring along the third dimension. 

A more detailed description of these flows Is presented here to promote 

understanding of their unique properties. 

Truly conical supersonic flows are steady state solutions to the 

Euler equations (Navler-Stokes equations with viscous terms neglected) 

for a particular set of boundary conditions. These conditions are a 

uniform supersonic outer flow and a body generated by rays passing 

through a common vertex. To ensure that the flow Is completely conical, 

the additional condition of a bow shock wave attached to the vertex of 

the body must be imposed. Examples of bodies which generate these flows 

are:  (1) circular cones, (2) elliptical cones, (3) delta wings, 

(4) delta wing/conical body combinations, and (5) axial corners. 
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Many variations/combinations of these bodies are possible which produce 

conical flows. Also, conical bodies which appear as nose shapes In more 

general configurations will produce locally conical flows. The 

characteristics of these flows are examined below. 

The dominant feature of conical flow Is that all fluid quantities 

are constant along rays passing through the vertex of the conical body. 

By noting that these rays are equivalent to the spherical radius r with 

origin at the cone vertex, conical flow can be mathematically described 

by stating that derivatives of all fluid quantities with respect to r are 

Identically zero. The physical implications of this statement are 

illustrated in Fig. 1. This figure shows a plane cut of an axisymmetric 

supersonic cone flow. A conical flow exists when the flow quantities at 

point A (along streamline i|i ) are identical to those at point B (along 

streamline ty ). The flow at both point A and point B can be completely 
B 

described in terms of the single angle 6 for this two dimensional cut. 

What is apparently a two dimensional flow is then in reality only one 

dimensional (sometimes referred to as 1-1/2 dimensional, since two 

velocity components are still present). 

Although somewhat more difficult to visualize, conical bodies at 

angle of attack in supersonic flow also produce conical flow fields. By 

analogy with the above discussion, these flows can also be described 

completely in terms of the independent variable 9 and a circumferential 

angle <j) (these angles are illustrated in Fig. 2). All natural features 

of the flow; such as imbedded shocks, bow shocks, slip lines, etc.; form 

surfaces composed of rays passing through the conical vertex. An example 

sketch of this flow is shown in Fig. 3.  The streamlines shown in Fig. 3 

show the manner in which the flow crosses the bow shock, expands around 



the body, and then Is turned back along the cone by the Imbedded shock. 

It Is Instructive to view flow features on a spherical surface through 

the field. 

Figure 4 Illustrates the approximate cross flow streamline pattern 

on the spherical surface and shows relative location of the shock 

waves.  The point at which the cross flow streamlines converge Is the 

vortical singularity first noted by Ferrl (Ref 5). The streamlines 

all have different values of entropy which Implies that density and 

entropy are discontinuous at the singularity with pressure being 

continuous. This singularity rests on the cone surface (In fact, 

Melnlk (Ref 17) has shown the possibility of two singularities on the 

surface) at low angles of attack and lifts off as angle of attack 

Increases. 

In summary, conical flows can be completely described In a 

spherical coordinate system by only two Independent coordinates (6, 40. 

All natural features of the flow are also conical surfaces. These 

facts tend to render a very complex flow more amenable to solution by 

presently available techniques. 

The Fluid Flow Equations 

In this section, the basic equations of fluid flow are presented 

In complete form and the conical symmetry assumption Is applied.  The 

resulting equations allow Integration to take place on a single 

spherical surface. The non-dlmenslonallzatlon of the equations and 

the physical meaning of the assumptions are discussed. 



The Navier-Stokes equations which describe flow of a perfect gas, 

can be written In conservation law form (Ref 18) for a spherical 

coordinate system as follows: 

3t + 3r + 39 + 3(j) + H  0 (1) 

where 

L 

D - r' sln8 P 

pu 

pv 

pw 

pe 

1 - r2 sine pu 

pu2 - an 

pUV - Ti2 

PUW - Tl3 

pue + qr- uan - VTi2 - WTi3 

r sine pv 

puv m 
T2 1 

pv2 - 022 

pwv - T2 3 

pve + ^8 ' UT21 - Va22 ~ WT23 



^-r pw 

puw - Tax 

pvw - T32 

pW2 - 033 

pwe + q. - UT31 - VT32 - wa33 

H ' r sine 

-(pV2-022) - (PW2 -O33) 

-COtO (pw2-a3 3) + (PUV-T12) 

cote (PVW-T23) + (puw-Tia) 

0 

The stress tensor terms T  and a.,  will be defined In detail later. 

Solution of the equation set in the form shown above would require 

very large amounts of machine time even for simple aerodynamic config- 

urations.  This has led researchers in the past to simplify the 

equation set through neglect of the stress terms (inviscld flow) 

and/or by reducing the number of dimensions to be considered in the 

problem. One class of flovs which has been extensively examined, 

(Refs 10,19,20) through neglect of the viscous terms, is that of 

inviscld conical flow. 

A conical flow, as noted in the previous section, can be 

described as an inviscld steady flow in which all flow quantities are 

constant along rays passing through the vertex of the conical body. 

If a body fixed spherical coordinate system (Fig. 2)  centered at the 

vertex of the conical body is used to describe the flow, then all 

spherical surfaces must have the same vector and scalar values of the 

10 



flow quantities for a given (6, (j)) point on each surface. Therefore 

all derivatives of flow quantities with respect to the spherical 

radius (r) of these spherical surfaces from the origin must be zero. 

This has the effect of reducing the number of Independent variables In 

the problem by one. 

Examination of experimental studies of supersonic flow over 

conical bodies (Refs 21-23) reveals that these flows exhibit approxi- 

mate conical behavior downstream from the nose region even though 

relatively large viscous regions exist. Cross (Ref 21) determined 

that the viscous layer grovth on the lee side of a delta wing in super- 

sonic flow was essentially conical. The oil flow separation traces for 

sharp cones In the experimental study of Stetson (Ref 22) are approxi- 

mately straight (but the conical vertex of these traces Is displaced 

downstream by nose effects). Therefore, In concert with an Idea first 

broached by Anderson (Ref 24) for axial corner flow, the coalcally 

symmetric flow approximation (TT— = 0) Is applied to all terms In 

Eq (1). 

The resulting equation set Is: 

l!+lM+5'-0 «> 
where: 

(a) D, F, and G are unchanged except In the definition of the 

stress terms. 

11 



«t r28lne 

0 

On 

T2J 

T31 

XlOn   ♦ VTi2   + WT13 

(C) 5'-^ + ^     ^ + J r^slne 

or     H" ■ r slnö 2 pu 

i   I 

-(pv2-a22) - (Pw2-a33) + 2pu2-au 

-COtö   (pW2-03 3)   +   3PUV-2T12 

cot9 (pvw-Tzs) + 3puw-2Ti3 

2pue   -  U0n   -VT12   -WTia 

These equations are non-diraenslonalized as follows, with dimensional 

quantities denoted by primes: 

max max max 

too 

max 

max 

p - p 
p 

t - t'          T - r 
r/Vmax                ^ 

«V         p    r Re -    max      too 
u 

2* R
8

TL 
's k-Y-i 

2Y 
(3) 

Equation 3 Indicates a notatlonal change from this point onward. 

Hereafter, units will be specified where dimensional quantities are 

used.    The quantities used for non-dlmenslonallzatlon are due to 
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Kutler (Ref 10).  It is significant that when tine is non-dimension- 

alized by the parameter r/V  , the r dependence In Eq (2) is contained 
max 

in the Reynolds number. The net effect is that the calculation is 

carried out at a single (6, iji) spherical surface with the distance of 

this surface from the cone apex determined by the Reynolds number. 

Therefore, all spherical radius scaling is now contained in the 

Reynolds number alone. 

The non-dimensional stress terms for this equation set are 

defined as follows: 

Tl2 ■T" "uto -v) 

Tl3"T31 " RriiSe(4 ' w 8in9) 

T23 ■ T32 ■ RTii^tle (w 8ine) -2 w C08e + I?] 

XRe "    " 3Re 

a 
an • - kp + sine 

a22 - - kp + -(w + u) + ^g- 

CT33 ■ - kp + r r—r (rrr + u sin + v 0080) +     "Q      ,.. r      Re sinö    3(|) sinö      (4) 
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The heat transfer terms are defined as follows: 

1  8T     • =    1  9T ,,. 
qe " ~ 2RePr 39  '  > - ' 2RePr 3(f> U; 

VCD where       Pr - —r^- 

At this point, it is prudent to examine further the physical 

Implications of the approximations applied to the above equation set. 

It should first be noted that the only approximations now inherent to 

the equations are that a perfect gas is required and that conically 

symmetric flow is assumed at all points in the field. Figure 5 

depicts a cross section through an axisymmetric cone flow with a some- 

what exaggerated boundary layer thickness shown by the dashed line. 

The thesis is that at a given calculation surface, the viscous layer 

thickness will be properly scaled by the Reynolds number based on the 

spherical radius to that surface. The only error then would be in the 

local gradients of the flow quantities and would be of the order of 

the angle between the spherical radius and the edge of the boundary 

layer at the calculation surface. The same statement could be made 

concerning a calculation at any point along the cone downstream from 

the non-conical nose region. Therefore, since the growth of the 

viscous layer thickness will not in general be linear, the assumption 

in reality only Implies locally conical flow. 

In order to test the above hypothesis, calculations were carried 

out using the above equation set and the method set forth In the 

following sections applied to axisymmetric cone flow. The cone surface 

pressure resulting from these calculations is shown in Fig. 6 and 

compared with hypersonic weak interaction theory for axisymmetric cone 
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flow (Ref  29).    The agreement shown In Fig 6 between the calculations 

and the weak Interaction theory Is quite good with divergence noted 

(as expected)  toward the nose of the cone.    In order to fully verify 

the hypothesis,  two dimensional calculations compared with appropriate 

experimental data are required.    The remainder of this report will 

present the results of calculations carried out at selected conditions 

for which experimental data are available.    Comparisons are made and 

conclusions are drawn concerning the adequacy of  the hypothesis. 

The Numerical Integration Scheme 

This section discusses the choice of MacCormack's finite differ- 

ence scheme as the Integration method for this problem.     The scheme  Is 

Illustratively applied to the one-dimensional wave equation as an 

example.    The equations to be Integrated are cast In MacCormack's 

predictor-corrector form, and the finite difference representation of 

the derivatives Is shown. 

The utility of MacCormack's   (Ref 9)   finite difference scheme for 

the solution of Invlscld supersonic flows has been demonstrated in 

numerous studies  (Refs  10-13).    More recent studies have also shown It 

to give excellent results for two-dimensional viscous flows with sepa- 

ration (Refs 25-27).     The scheme can be described as a second orOer 

accurate predictor-corrector sequence for the Integration of partial 

differential equations.    MacCormack's scheme Is a variant of  the Lax- 

Wendroff scheme  (Ref  10)  and can be shown (as applied to the linear 

wave equation)  to reduce to Lax-Wendrjff  form when the predictor Is 

substituted Into the  corrector.    Since second order difference schemes 

generally give better results with  fewer mesh points than first order 
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schemes, MacConnack's proven differencing scheme Is chosen for the 

present study. 

If an Euler predictor followed by a modified Euler corrector Is 

3U   3U 
applied to the 1-D wave equation rr + cv— - 0; 

Predictor:    Ä... - Ü. - cAt (U ), (6) 
1+1   1x1 

Corrector:    U1+1 -i^ + ^ - cAt (\)±+^ (7) 

MacConnack's scheme results when forward first spatial differences are 

used In the predictor and backward first differences In the corrector. 

The predictor corrector sequence Is then (with 1 representing time 

location and j spatial location): 

Predictor:   ^+l - uj - ^ (uj+1 - uj) (8) 

Corrector:   üj+1 - \ [oj + Hf1 - g  (ÄJ+1 - »J«)]     (9) 

The two equations collapse, when the appropriate substitutions are 

made, to the following Lax-Wendroff form: 

«r - »j - ^ "k - ii> - 
^'"jfi -2v] - "J-I'     <io) 

The leading error terms which are truncated through use of this finite 

difference equation representation are of the form (with the derivatives 

evaluated at an undetermined point within the range of Interest) 

cAtAx2 „    cAt2Ax2 „  .At3 „ 
6    x     24    x   6   t 
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which Illustrates that when At and Ax are of the same order,  the 

estimated truncation error mupt be of 0(At3)  and the method can be 

said to be second order accurate.    The stability of MacCormack's 

scheme Is examined In Appendix C. 

When the scheme Is applied to Eq  (2), the resulting MacCormack's 

predictor-corrector steps are as follows      (the •*■ used previously to 

indicate vector quantities Is omitted here for clarity); 

Predictor ft*} - D^ ,   - T|(F *    ,   - FJ . )    - j,k        j,k      Aev J+l,k        j,k 

Corrector „1+1      1 f-  1    , ^1+1      AtAi+1      'id+l    . 
^.k-I^j.k^j.k-Äe^.k-Vi.^  - 

äI^JÜ - ^tk-i5 ■At KX1 J       (i2) 

where ^ Indicates that the flow quantities are evaluated at the 

predictor level and D . Implies D(lAt, jAS, kAcj)). The presence of 

the H' matrix In these equations Indicates that they are In so called 

"weak" conservation form (Ref 28). Numerical results In the present 

study reveal that no significant error In total temperature occurs 

across shock transitions through use of this form of the equations 

(Implying that energy must have been properly conserved). 

Since Eq (2) contains derivatives In the stress terms which 

remain as an Integral part of the matrix terms, a value of the deriva- 

tives must be obtained at each of the mesh points used In the primary 

differencing. These values must be obtained In a manner which «rill 

maintain both consistency and accuracy of the differencing equation. 

This was done In the present study by evaluating the interior derivative 

terms with respect to the same Independent variable using first order 
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difference approximations of opposite sense to the exterior differences. 

An Illustration follows for the predictor. 

Consider the vector F which consists of functions of the flow 

quantities and their derivatives.  The finite difference representa- 

tion Of -jrjr Is 

90 * ÄS (Fj+l.k ' ^.k* (13) 

Assume that the vector F contains the derivative -rx, values of which 

are therefore required at mesh points j,k and J+l,k In the difference 

representation. These values are obtained by "Kä-Tä  (u.i+i k ~ 
ui v^ 

at j+l,k and XQ~^-  (U^ k - "j , k) at j,k. The resulting finite 

32u 
difference representation for —y Is the standard second order accurate 

39 

difference centered at j. 

When a cross derivative term Is Involved (say a -r-r term contained 

3? 3F 
In -r-r) , second order centered first differences are used. With 77 

represented as above, ^ ■ -^  (uj+1>fcfl " "j+i.k-^ 
at j+1*k and 

"5j = -TT1
 (u , ^ - u. . ,) at j,k.  This results In the standard second 

32u 
order accurate second difference for the a.afl difference centered 

at J+ij. 

This procedure Is also used In the corrector step with all differ- 

encing reversed In the 6 direction. The resulting differences, when 

combined with the predictor Into the Lax-Wendroff form, are correct 

and centered at j. 

This essentially completes the application of MacCormack's scheme 

to Eq (2).  It should be apparent that throughout the analysis of 

MacCormack's scheme, careful prescription of the first order differen- 

ces In the Individual predictor and corrector results In a second order 
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accurate scheme for the entire cycle.     The details of the  Integration 

procedure are described In the  following section. 

The Solution Procedure 

In this section,  the details of  the Integration procedure are 

discussed.    The finite difference mesh Is first described,   followed by 

the Initialization used for the Initial value problem and a brief 

description and discussion of  the physical boundary conditions. 

Finally,   the convergence criteria for determln^ng when the sought-for 

steady state solution has been reached Is described. 

As stated earlier In this  section the calculation takes place on 

a spherical surface located at a distance r from the vertex of the 

cone.    The distance r Is determined by the distance along  the cone at 

which correlation with experiment is  desired.    It  then appears as  the 

characteristic length in the Reynolds number anc5  scales  the viscous 

effects at the calculation surface.     The integration procedure,  as 

with all finite difference techniques,  requires values of  the fluid 

flow quantities to be known at discrete points labeled as mesh points. 

For the present study,  these points are arranged  on the  (6,  $)  calcu- 

lation surface as shown in Fig.  2.    The mesh points are evenly spaced 

in the 6 and (j) directions with A6 ^ A(t>.    It should be noted that con- 

siderable advantage for viscous calculations can sometimes be obtained 

by varying mesh point spacing  to cluster points near the surface. 

However,  only uniform size mesh is considered here since  tim present 

study is primarily concerned with proof of an untried assumption  for 

the flow equations.    Therefore,  the additional complexity involved In 

obtaining the uneven mesh spacing was not desirable and was not made 
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a part of this study.    The mesh spacing used was designed to give 

entirely adequate results on the lee side of the cone In the large 

viscous regions present there. 

The finite difference mesh Is Initialized to free stream values 

of the flow quantities except for surface points at which the three 

velocity components are set Identically to zero.    This Is physically 

equivalent to bringing the cone from rest to the free stream Mach 

number Instantaneously.    As might be expected, the Initial transients 

associated with this procedure are quite large and require numerical 

damping at the higher angles of attack.    This Is not, however,  consid- 

ered detrimental since the damping Is required continuously for most 

of the solutions obtained for reasons which will be discussed later. 

Also, a comparison between final results obtained with the Impulsive 

start and with a solution obtained by changing slightly the boundary 

condition representation (thereby perturbing the flow)  of a converged 

solution revealed no essential difference between the two solutions. 

The boundary conditions, which are maintained throughout the 

calculation, are: 

(1) All velocities Identically zero at the surface. 

(2) Surface temperature constant and equal to the value for the 

experimental case. 

(3) Free stream values of all flow quantities are maintained at 

the outer edge of the mesh.    Since the bow shock wave was very close 

to the cone surface on the windward side for the high a cases, an 

ellipse was used to provide a dummy outer edge of the mesh which would 

be close to the bow shock and therefore save computer time. 
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(4) Lateral symmetry of the flow quantities is maintained across 

the (j) - 0° and (j) • 180° lines. 

The values of pressure and density at the surface are determined during 

the integration. A discussion of this matter, plus a more complete 

description of the boundary conditions, appears in Appendix A. 

In this study, the predictor and corrector are swept through the 

((j), 6) mesh in turn, beginning at the (j) * 0 , 6 - 6 point. A complete 

traverse of the predictor and corrector constitutes one time step. 

Step by step, the procedure is as follows: 

(1) The predictor is swept through the meäh Irom 9 " 9 to 6 " 3» 

and from (j) - 0° to 180°. 

(2) The D matrix is decoded to obtain updated values of the flow 

quantities. 

(3) The corrector is swept through the mesh, using the updated 

flow quantities where appropriate. 

(4) The D matrix is decoded to give values for the flow quanti- 

ties at the end of the time step. 

(5) Boundary conditions are applied where necessary during the 

integration. 

As implied in the stated outer boundary condition, no special 

provisions are Included to handle the bow shock wave or any Imbedded 

shock waves which may arise. These shock waves are "captured" through 

use of the conservation form of the governing equations (Refs 10,28). 

This procedure is considered adequate through use of numerical damping 

for reducing spurious oscillations around ehe shock waves (Appendix B). 

A criteria for determining when the steady state has been reached 

(i.e. "convergence") is considered an integral and necessary part of 
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this study.    Previous unpublished experience by the author with 

Invlscld flows reveals  that Instabilities  In the  calculation can arise 

even after changes In the flow field pressure become small as seen on 

a plotter or CRT display device.    Therefore, a stringent convergence 

criteria Is used In the present study In order to Insure that the 

solution Is stable and that the results obtained are repeatable.    The 

convergence criteria that was used required computation of differences 

In pressure, density, velocity, and energy between time steps and 

stopped the calculation when these differences reached the fifth signi- 

ficant figure for all points In the flow field.    At the time step 

sizes used for runs reported here, convergence of the solution typically 

occurred at the physical time required for the outer flow to move 4 to 

5 times the length from the nose to the calculation surface.    By 

reducing the number of significant figures input to the convergence 

routine,  it was found that the fifth-place criteria gave run times 

nearly twice as  long as would have been required to obtain values of 

surface pressure accurate to engineering standards    (Changes of less 

than 3% occurred in surface pressure during the l&st 50% of the run). 

The numerical stability of the present calculations is therefore assured. 

The present study did not make continuous use of a stability 

limit criteria to determine allowable step size.     Instead, the time 

step size for each computer run was frozen at a value which would 

insure no difficulty with normal stress damping (described in Appendix 

B).    Based on experience gained in the study, a stability criteria was 

postulated and confirmed by numerical experiment.    This entailed 

repeat of a previous run with time step size automatically determined by 

applying the criteria noted below at each time step.    This stability 
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limit criteria Is described In oetall In Appendix C. The criteria Is 

summarized here: 

At - m MIN (Atcfl, At^. Atvi8c) C14) 

where» <1 , Atcfl< |v|  |w|     j ^Q2 + (at^E^?^ 

AO  (slneA<j)) + c   AeuineA*) 

At ^ - «M ff, ^A. 
nsd      212 + 6X| 

y 

vise 2Y 

In this Instance, MIN implies the minimum value of the quantity 

found by searching all mesh points in the flow field. Although m is 

theoretically limited to 1.0 (the CFL condition), it was found that a 

value of m ■ 1.2 could be used once the initial strong transients 

Cwere past. Instability of the solution occurred at m - 1.4. 

The operation sequence used in the computer code was the 

following: 

(1) READ input data 

(2) Initialize mesh 

(3) DO time steps, 1 to input number 

(4) Calculate local Reynolds number 

(5) Calculate local damping coefficients 

(6) DO predictor for all but free stream boundary mesh points 

(a) Calculate coordinate metrics 

(b) CALL boundary value subroutine 

(c) Define finite difference representations 

(d) CALL vector load subroutine (creates F, G, and H" in 

Eq (2) according to the requirements of (c) above) 
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(e) CALL Integrations subroutine (creates predicted value 

of D at new time level by application of Eq (11) 

(f) CALL D vector solver subroutine (decodes flow quanti- 

ties from calculated D vector at new time level) 

(7) CALL symmetry boundary condition subroutine 

(8) DO corrector for all but free stream boundary mesh points 

(This Is an exact duplicate of step (6) except for changes In finite 

difference representations and flow quantity time levels. The code 

used the same subroutines for both predictor and corrector sequences.) 

(9) CALL symmetry boundary condition subroutine 

(10) Test for convergence. If not converged, return to step (3) 

and continue until convergence criteria Is met or the Input number of 

time steps Is completed. 

(11) Store results 

(12) Print and plot results of calculation 

(13) STOP 

This sequence of operations may be used to Integrate (by use of 

MacCormack's scheme) other three coordinate versions of the flow 

equations by appropriate changes In steps (6) (b),  and (d). The 

restrictions are that weak conservation form be used and that the 

Independent variable of Integration be time or a coordinate direction 

In which M > 1. 

This completes the description of the approach used In the present 

study. The following section describes and compares with experimental 

data the numerical results obtained through application of this 

approach. 
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IV. Numerical Results 

This section presents a comparison between results obtained with the 

present technique, the numerical technique of Lubard and Helllwell, and 

selected wind tunnel experiments. The first comparison Is with the 

experimental study of Tracy (Ref 30). This study has been a standard of 

comparison for other techniques (Refs 14-15) and Is very well documented 

in the open literature. The second comparison Is with the experimental 

study of Stetson (Ref 22) and the third with that of McElderry (Ref 31). 

The validity of any heretofore untried assumption applied to the 

governing equations can only be determined through comparison of the 

results obtained by calculation with results of experiment. To test the 

validity of the present technique, experimental data were chosen which 

had been published and which provided a Mach number range of six to 

fourteen. The experimental cases chostn were for sharp cones within the 

limits reasonably obtainable by standard machining techniques (0.001 to 

O.002 in. nose radius). Reynolds numbers, except for that of McElderry, 

were in the range for which laminar flow could be expected. Transition 

onset in McElderry's data was at approximately Re = 2.4 x 10 .  The 

cases all have flow field probe data available for selected Reynolds 

numbers and angles of attack. The remainder of this section will 

present a detailed comparison of the results of the present calculation 

with the chosen experimental data. 

. 
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Tracy'a Data 

Tracy (Ref 29) conducted an experlmerlal study using a 10 half 

angle sharp (p.002 nose radius) cone In M - 7.95 flow. The wind tunnel 

working fluid was air with total pressure and temperature of 259.3 

psia and 1360 R for the runs of Interest. The resulting free stream 

Re was 1.25 x 10 /Ft.  Data were taken at angles of attack of 0 to 24 

In 4 Increments. Measurements of surface pressure at x - 4.0 In. and 

surveys of pi cot pra"*ure at x ■ 3.45 in. (and perpendicular to the 

cone surface) were selected for comparison. The configuration of the 

model and instrumentation prevented the acquisition of both types of 

data at the same x station on t^e cone surface. 

Calculations were performed at the following conditions: 

M « 7.95 Re - 4.2 x 105 (x - 4.0 in.) 
x 

P.. - 259.3 psia 
too 

r  - 1360OR T /T  - 0.41 
too W  t» 

a - 0°, 8°, 12°, 20°, 20.5°, 24°  Pr - 0.72 

Th, finite difference mesh contained 48 x 50 points except for the 

a - 24 case in vhich a 48 x 70 mesh was used. The circumferential 

($) step size was 4 <or all runs with the 6 step size varying depend- 

ing r-r  the angle of attack and number of mesh points used. All runs 

in this study were converged to the fifth significant digit of the 

flew quantities.  Computer run times for these solutions ranged from 

1.4 hours (a - 12°) to 1.6 hours (a - 74°) on the CDC CYBER 74 

(equivalent in CPU speed to a CDC 6600).  The number of time steps 

required ranged from 1860 (a - 8°) to 2480 (a - 12°).  The fact that 

the bight.-1 angle OL attack run did not take the largest number of 

time steps is due to variance I;, ehe actual CFL condition at which 
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each calculation was made. More consistent results are obtained 

through use of the stability criteria set forth In Appendix C. In 

order to provide comparison of both flow field and surface quantities, 

cjmparlson with experimental data Is shown for surface pressure and 

pltot pressure surveys. In addition, velocity vector plots are shown 

for the calculations and pictorial displays of cross flow field fea- 

tures are shown In order to compare the overall agreement of the 

calculation with experiment. (These data were also reported In Ref 39). 

Figures 7 through 10 compare the numerical results of the calcu- 

lation with the surface pressure data of Tracy. At this point it 

should be noted that, unless otherwise stated, the discrete points 

shown for Tracy's data were obtained from continuous curves in Ref 30 

through use of a digitizer.  Figure 7 gives this comparison for 

a = 8 . The calculated value can be seen to fall just at the edge of 

the symbols for the entire circumference of the cone.  This corresponds 

to a local difference of 1.6Z at $ ■ 0 , the windward centerline of the 

cone. The surface pressure comparison for a » 12 is given in Fig. 8. 

The agreement in this case is somewhat better near the leeward center- 

line (<J) - 180 ) but the local difference has Increased to 2.5% at (f) * 0. 

The same type of agreement exists for the a - 20 (Fig. 9) and a - 24 

(Fig. 10) cases with the local difference for a - 24 becoming 5% at 

4) " 0 . To provide a further comparison, the surface pressure at 0 » 0 

obtained by Lubard and Helllwell (Ref 16) for the a - 12 case is 

identical to that obtained In the present study. The first possible 

reason for the discrepancy between calculation and experiment on the 

windward side is that Tracy noted an approximate 0.5 uncertainty in 

angle of attack in the wind tunnel used for the experiment.  In order 
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to test this possibility, the a - 20 run was reconverged at a - 20.5 . 

The surface pressure at (j) ■ 0 regained only 1/2 of the 4.7% difference 

between the experiment and the a " 20 solution, indicating that not 

axl of the discrepancy could be due to the uncertainty in angle of 

attack. The second possibility which should be considered is the fact 

that the surface pressure taps used for the experiment were somewhat 

large in relation to boundary layer thickness on the windward side. 

In any case, an error band of at least 5Z  is present in most experi- 

mental studies. 

Sample circumferential pitot surveys are presented in Figs. 11 

through 13. The angle in the 6 direction for comparison with experi- 

ment is defined by 

e-e^tan"^^] (15) 

where y is the normal distance above the cone surface in inches. The 

Reynolds number for the calculated results is 4.2 x 10 .  Since the 

pitot surveys were made at constant height above the cone surface, 

they will in most cases intersect the bow shock at some point in the 

circumferential traverse. This appears in the pitot pressure plots as 

-3 
a sharp rise from the free stream value (8.7 x 10 ) to the maximum 

value for each trace. Probe effects cause the character of the rise 

of experimental pitot pressure to appear remarkably like that of the 

rise of pitot pressure through the captured shock waves obtained in 

the present study, w?.th decrease in transition slope and loss of peak 

pressure in the calculations caused by the necessary damping present. 

Note that the pitot pressure transition centerpoint (the shock location 

criteria used by Tracy) of the captured shock in all of the calculated 
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results Is virtually the same as would be determined from the experi- 

mental pltot survey and that the calculated pltot pressure quickly 

returns to the proper magnitude on the high pressure side of the shock. 

For the a » 12 case (Fig. 11), the uppermost survey (y ■ 0.4 in.) Is 

entirely in the inviscid flow region for both calculation and experi- 

ment. The survey nearest the cone surface (y - 0.05 in.) is in the 

viscous layer for more than 90 of the circumference of the cone. 

Agreement with experiment for both of these surveys is good.  The 

calculated center survey (y - 0.2 in.) departs from the experimental 

value near the lee centerline (0 - 180 ). This departure is due to 

the smaller viscous layer present In the calculation as compared to 

experiment. 

The a - 20 case (Fig. 12) has essentially the same degree of 

agreement between the calculated results and experiment with the excep- 

tion that the departure near the lee centerline is concentrated in a 

region of approximately 6 ($ m  174 - 180 ). Agreement outside this 

region Is generally good. Figure 13 Illustrates that essentially the 

same agreement and region of discrepancy exist for the a - 24 case. 

The pltot pressure discrepancy near the lee centerline can be 

evaluated more clearly from Figure 14, which compares pltot pressure 

along the lee centerline for the a « 24 case. The discrepancy, as 

noted above, extends for approximately 6 to either side of the lee 

centerline for this angle of attack. It Is attributed to a combina- 

tion of locally large pltot pressure drop due to finite model nose 

radius and to nose effects resulting from the non-conical region at 

the nose. Any persistent experimental nose effects would tend to be 

concentrated along the lee centerline as they are swept back along the 
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cone. This phenomenon can be observed In the experimental study of 

Stetson (Ref 22) through examination of the oil flow pictures presented 

therein. For Instance, Fig. 12 of Ref 22 shows a near conical cross 

flow separation originating at approximately 16% of the cones length 

from the nose. As can be observed from the oil flow traces prior to 

this point, the flow originating at or near the nose has been swept 

around the cone to the lee side by the time the 16% point has been 

reached. Since tin flow Is primarily axial on the lee side after the 

cross flow separation begins, the results of the effective blunting 

and the non-conical region near the nose remain at or near the lee 

centerline as the flow continues along the cone. 

To demonstrate the pressure distribution obtained through the 

shock layer. Fig. 15 shows static pressure In the 6 direction at 60 

Intervals around the cone for the a = 12 case. The elevation above 

the cone surface Is given In radians In this and subsequent computer 

generated plots. As noted In Appendix B, the damping was not tailored 

In the 6 direction for these runs, so excess smearing of the shock Is 

evident on the free stream side. No appreciable harm Is seen to 

result from this smearing. 

The velocity vector plots In Figs. 16 through 18 provide an Indi- 

cation of cross-flow streamline patterns and Illustrate the relative 

magnitude of cross-flow velocity for all but the lowest momentum 

regions. The reverse flow region Is thin In the a = 12 case (Fig. 16) 

with the vortical singularity (defined for this study as the cross 

flow stagnation point toward which streamlines converge) occurring 

near the edge of the viscous layer 3.2 above the cone surface. The 

cross-flow separation point Is at (^ - 163 with the experimental point 
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occurring at $ * 156 .  This difference Is attributable to lack of 

resolution of the reverse flow region at this angle of attack In the 

present study, as both Lin and Rubin, and Lubard and Helliwell obtained 

a separation point nearer that of the experimental data. This was 

supported In the present study by the fact that the separation points 

In the higher a runs (with more mesh points In the reverse flow 

regions) were virtually Identical to those of experiment. 

At a - 20 (Fig. 17) the extent of the reverse flow region and 

the position of the cross-flow separation point have reached limiting 

values, as no substantial changes In these can be seen In the a * 24 

run (Fig. 18) . This was noted for the separation point In both experi- 

ment and theory by Lin and Rubin (Ref 15). However, the extent of the 

viscous region and the location of the vortical singularity (as deter- 

mined In the present study) continue to change as a Increases. The 

vortical singularity Is near the edge of the viscous layer for all 

cases In the present study In which It Is lifted off the cone surface. 

Although agreement with experiment so far has been shown to be 

good, perhaps the best evaluation of the validity of the conical flow 

assumption for engineering solutions can be made through a pictorial 

representation of the flow field features. Figures 19 and 20 compare 

the overall results of the present study with the calculation of Lubard 

and Helliwell and Tracy's data. As shown In Fig. 19, the position of 

the bow shock and viscous layer edge of the present study for this 

case are essentially those obtained by Lubard and Helliwell. Both 

numerical studies result In a shock position too near the cone and a 

thinner viscous layer at this a when compared with experiment.  This 

is considered to be primarily due to the failure to account for nose 
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tip effects as noted above. A weak supersonic region is present In 

the cross flow plane and Is shown by the solid lines between viscous 

layer and bow shock. The vortical singularity position is shown by 

the open oval symbol on the lee center line. The structure of the 

a ■• 24 case Is more Interesting (Fig. 20). Supersonic cross flow Is 

seen to exist over most of the field and Is terminated by a complex 

sonic line/shock wave. The position of this line Is nearer the lee 

centerline than shown by Tracy.  The small amplitude oscillations 

present on the imbedded sonic line/ahock as it nears the bow shock 

can be seen (through careful examination of Fig. 18) to be caused by 

oscillations (in velocity) propagating through the supersonic cross 

flow region from the vicinity of the bow shock. The (j) grid spacing 

used in the present study did not give sufficient resolution to deter- 

mine the existence of the lambda portion of the Imbedded shock, as 

shown by Tracy. However, its signature may be surmised in the htnnp 

present in the calculated viscous layer edge at an angle of approxi- 

mately 30 from the lee centerllne. The curious flat top present In 

the calculated viscous layer edge as compared to experiment is again 

attributed to the failure of the numerics to model non-conical nose 

effects. 

In summary, the present technique is seen to model all features 

present in the experimental study, with the exception of the non- 

conical nose effects. The computer times are not excessive since they 

are based on a very stringent convergence criteria and represent an 

Increase in time per mesh point calculated of only 40% over a compar- 

able inviscid computer program. 
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Stetson's Data 

Stetson (Ref 22) conducted an experimental study using a 5.6 

half angle sharp (0.001 in. nose bluntness) cone in M = 14.2 flow. 

The wind tunnel working fluid was air with total pressure of 1600 

psla and a total temperature of 2050 R. The resulting free stream Re 

Is given as 0.62 x 10 /Ft. Data were taken at angles of attack of 0 

to 14 In 2 Increments (plus a run at 5 ). Measurements of surface 

pressure were made at a number of stations along the cone, and pltot 

surveys were made perpendicular to the free stream velocity at x/L * 

0.87 for a - 10°. 

A calculation was made at the following conditions: 

M - 14.2 Re - 7.9 x 105 (x/L -0.75, 
x ' 

P  - 1600.0 psla L - 15.37 In.) 
too 

T      - 2050OR T /T      - 0.29 
too W     too 

Pr -0.72 

The finite difference mesh contained 48 x 50 points with the circum- 

ferential step size being 4 as for the previous calculations. The 

computer run time (with convergence criteria as before) was 2.2 hrs. 

of CDC 6600 time for 2700 time steps. In order to provide comparison 

of both flow field and surface quantities, plots of calculated results 

versus experimental data are shown for surface pressure and selected 

cuts through the pltot pressure surveys. Also, a velocity vector plot 

of the calculated results is shown. A plot of surface pressure 

compared with Stetson's data comprises Fig. 21. The agreement with 

experiment Is quite reasonable with the maximum difference of approx- 

imately 16% (a^ compared with local static pressure) occurring in the 

vicinity of the pressure minimum.  Pressure scale expansion in Fig. 21 
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and the low absolute magnitude of pressure In this region make the 

agreement appear less adequate than actually exists. The complete 

circumferential pressure distribution is qualitatively comparable to 

that of Fig. 9. The surface pressure scale of Fig. 21 is equivalent 

to 0.0 to 0.6 on Fig. 6. The calculated cross flow separation point 

(26 from lee centerline) agrees quite well with the experimental 

value (27 from lee centerline). 

Pitot pressure comparisons at three $  stations on the lee side 

of the cone are given in Figs. 22 through 24.  The first comparison at 

(j) * 180 (Fig. 22) shows a large difference in position (approximately 

27% at the bow shock) between given levels of pitot pressure for the 

calculation and experiment. Although the same phenomenon was noted in 

Tracy's a - 24 case (Fig. 14), the difference was small at the edge 

of the viscous layer and the calculated bow shock was displaced very 

little from the experimental position. However in the present case, 

the bow shock is displaced nearly as much as the edge of the viscous 

layer.  This displacement can be seen to persist (although much smaller 

in magnitude) through (j) - 160° (Fig. 23) until by (j) - 140° (Fig. 24), 

the agreement is nearer that expected from previous results. In all 

three plots of pitot pressure, the trends as shown by the calculation 

are essentially correct. The remaining question then concerns the 

possible reason for the discrepancy between the calculated and experi- 

mental viscous layer thickness. 

Several possibilities for the cause of the viscous layer discrep- 

ancy should be examined.  It should first be noted that the perfect 

gas assumption results in a somewhat higher Reynolds number than is 

quoted in Ref 22 (0.83 x 10 vs. 0.62 x 10 ).  Since this would result 
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in a somewhat thinner viscous layer for the calculation, the Reynolds 

number was lowered 20% and the run was reconverged. The change In 

shock position on the leeward side was a maximum of 0.25 (as might 

have been expected for this small change In Re). The resulting small 

change In shock position Indicated that a change In Re of at least an 

order of magnitude would be necessary for better agreement. A more 

likely candidate for at least part of the discrepancy In viscous thick- 

ness Is the effective viscous nose blunting present In the experiment. 

This Is clearly shown In Fig. 25 (taken from Ref 22) and would account 

for at least one-fourth of the discrepancy (assuming no change In bow 

shock angle, which of course could not be guaranteed). 

The value of ;< for this calculation was 3.22. Without further 

Information concerning the source of the viscous layer discrepancy, 

this higher value of x must be viewed as an Indication that the 

discrepancy will be encountered.  (According to Fig. 6, divergence of 

the present technique from weak Interaction theory was noted at 

X ■ 1.55 for Tracy's conditions). 

To Illustrate the features of the flow, a plot of cross flow 

velocity vectors comprises Fig 26. This plot Illustrates that the 

lee side vortices and the vortical singularity which existed In Tracy's 

cases exist here also. The vortical singularity occurs near the edge 

of the viscous layer as before. 

In summary, the calculation Is seen to model the features and 

trends present In Stetson's experimental study with the only apparent 

difficulty being the failure to correctly predict lee side viscous 

layer thickness and shock position. The maximum difference of approx- 

imately 27% occurred at the lee cent.ij.llne ($ m  180 ). 
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McElderry'■ Data 

McElderry (Ref 31) analyzed experimental data taken for a 6 

half angle sharp cone 38.06 in. in length in M = 6.05 flow. It should 

be noted that these data also appear in Ref 32 by Rhudy and Baker. 

The wind tunnel working fluid was air with total pressure of 280.0 psia 

and a total temperature of 850 R. The resulting free stream Re was 

given as 5.0 x 10 /Ft. Data were taken at angles of attack of 0 to 

12 in 3 increments. Surface pressure measurements were made at 

several locations along the cone with pitot surveys made perpendicular 

to the cone centerline at x/L > 0.75 and 0.97. Heat transfer data were 

taken on a thin walled model and were used to locate the boundary 

layer transition region on the cone. References to transition contained 

in the remainder of the discussion of these data are based on the 

transition location analysis presented in Ref 31. At the experimental 

6 
free stream Reynolds number of 5 x 10 /Ft., transition was essentially 

complete on the lee side by x/L ~ 0.3. Since the surface pressure 

measurement nearest the tip was at x/L = 0.31, nearly all lee side 

pressure data were taken in the turbulent flow region. 

The first attempts made to calculate this case were at a Reynolds 

number of 15.0 x 10 which corresponds to the fully turbulent flow 

region near the base of the cone. As expected, the very thin boundary 

layer present at this Reynolds number created extreme difficulty in the 

vicinity of the interaction with the lee side imbedded shock wave 

(The flow at this Reynolds number, when considered without provision 

for turbulence modeling, could be characterized as nearly inviscid and 

therefore contains some of the difficulties encountered with the 

inviscid solution). No combination of damping and step size was found 
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which would lead to convergence at the above Reynolds number.  The 

Reynolds number was then reduced by a factor of ten to 1.5 x 10 and 

the run was successfully completed.  This reduced Reynolds number 

corresponds to a station on the cone just prior to the onset of transi- 

tion (as determined In the experimental study) at the noted angle of 

attack and therefore was In a region where the laminar flow equations 

were still valid. 

The conditions for the successful run were: 

M - 6.05 Re - 1.5 x 106  (x = 4 In.) 
x 

0161 Pt    - 280.0 psla 
too V1^ 

T      - 850OR 
Coo 

Pr -a 

a - 12° 

The finite difference mesh contained 48 x 50 points with the $ step 

size being 4    as before.    Since considerable experimentation with 

time step size and damping factor was necessary during this run,   the 

computer  time of 2.3 hours was more than would be required for a rerun 

of this or a similar case. 

The Initial behavior of this solution was essentially the same as 

that  for  the higher Reynolds number mentioned above.    That Is,   the  lee 

side Imbedded  shock Is strong until very near the cone surface  (due  to 

the thin viscous layer).    This resulted In a strong compression In the 

vicinity of the cone surface which was  then followed by an over- 

expansion and then a recompresslon to the cone lee centerllne point 

((f) * 180 ).    Although this appeared to be a persistent solution to the 

governing equations as numerically approximated,   the overexpanslon 

became strong enough to drop pressure  (and thereby temperature)  below 

zero which then destroyed the calculation.     Since normal stress damping 
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was found to be effective In damping starting transients In the lee 

side region for Stetson's data, It was also tried here. After some 

experimentation. It was found that the overexpanslon could be controlled 

(and eventually made to disappear entirely) by a damping factor of 225.0 

In the 6 direction and 100.0 in the $ direction. These factors are 

scaled by the Reynolds number and therefore correspond to factors of 

63.0 and 28.0 respectively at Tracy's Reynolds number. In contrast to 

the use of damping to control starting transients, the damping in this 

case could not be removed as the overexpanslon would then reappear. 

The above damping factors were then maintained until the solution con- 

verged. Since the maintenance of normal stress damping in the viscous 

layer may shift the density distribution through the layer somewhat, 

changes in the agreement with experiment might be expected. 

Unfortunately, experimental measurements were not made far enough 

forwnrd on the cone to provide comparison with the calculated solution 

at the same Reynolds number. The first surface pressure measurements 

were at x/L ■ 0.31 at which point transition was essentially complete 

on the lee side at 12 angle of attack.  The dual lee side separations 

associated with turbulent flow were present in ehe experiment at the 

x/L «0.31 point Indicating that the comparison could not possibly be 

exact as the calculation only had the single cross flow separation 

which is generally associated with laminar flow. However, this cal- 

culation provides a unique opportunity to examine the adequacy of the 

conical symmetry assumption for turbulent flow.  It can be postulated 

that if the conical symmetry assumption is to be valid in the turbulent 

regime, an examination of the flov field just prior to the start of 

transition would differ only in the details of the viscous layer when 
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compared conically with a measurement far downstream of transition. 

To test this hypothesis, a comparison of the calculation (x/L - 0.10, 

Re • 1.5 x 10 ) to the experimental surface pressure (x/L ■ 0.955, 

Re - 15.0 x 10 , Ref 31) and selected pltot surveys (x/L - 0.75, 

Re - 12.0 x 10 , Ref 32) Is shown in Figs. 27 through 29.  In this 

Instance, a conical comparison implies examining flow quantities at two 

distinct spherical radii (points A and B of Fig. 1) on each of a series 

of rays passing through the vertex of the cone. If the flow quantities 

have nearly the same vector and scalar values at points A and B on a 

majority of the rays, then the flow is essentially conical in charac- 

ter. In the present comparison, point A corresponds to the calculated 

values at a point on the cone upstrean of transition and point B corre- 

sponds to the experimental measurements downstream t*t  transition. 

The experimental surface pressure at x/L - 0.955 is shown conically 

compared with the calculated values in Fig. 27.  The agreement is quite 

good in both trend and absolute value until the vicinity of the experi- 

mental primary separation at (j) ■ 126 is reached.  From this point on 

toward the lee centerline, the absolute value of the pressure r.hows 

varying agreement with experiment. The. calculated separation point 

(d) - 163 ) is near the experimental secondary separation point 

(0 » 166 ).  To place the conical comparison in perspective, the agree- 

ment of the present calculation with experiment is far better than is 

obtained by the invlscid techniques shown in Ref 31. 

Pitot pressure surveys for both calculation and experiment normal 

to the cone centerline are presented in Figs. 28 through 30. The 

first survey is at (f) - 180 (Fig. 28).  Both experiment and calculation 

are characterized by very high speed flow prevailing nearly to the cone 
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surface. For example, the first two mesh points above the surface in 

the calculation have local Mach numbers of 5.0 and 5.9 respectively. 

The oscillations occurring between 1.0 and 2.0 inches in the calcula- 

tion are numerical. However, the apparent oscillation in the calcula- 

tion occurring between 0.0 and 1.0 in. is in reality the solutions 

reflection of the fact that a high speed "Jet" of flow occurs (as 

evidenced by tbo: high local Mach numbers noted above) on the lee center- 

line under the contra-rotating vortices. The existence of this Jet is 

confirmed by examination cf Fig. 31 which shews the calculated Mach 

number distribution along lines of constant 4). The vor :ex structure 

is seen to be centered ct $ -  170 . The local Mach nunber clearly 

Increases at the first two mesh points above the surface as the lee 

centerlin«? (()) = 180 ) is approached. The apparent oscillation on the 

$ ■ 180 line between 0.0 and 1.0 in. is in reality an indication of 

vortex position.  Tils region of high speed flow can also be readily 

seen in the pitot maps in Ref 32 at x/L - 0.97. However, the resolu- 

tion of the lines of constant pitot pressure is insufficient for the 

x/L - 0.75 surveys in Ref 32 to be able to plot with certainty this 

"Jet" in the experimental data on the graph shown here. The pitot 

survey at 4> ■ 160  (Fig. 29) shows much the same trend as the (t> ■ 180 

survey except for lower momentum flow near the surface and a slightly 

thinner viscous layer in the calculation than in the experiment. At 

$ ■ 140 (Fig. 30) the conical agreement of the calculation with 

experiment li1 very good. 

The global conical agreement with experiment can be examined 

through the characteristics of the cross flow velocity vector plot in 

Fig. 32. One immediately obvious feature of this plot is that the 
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vertical singularity Is not lifted off  the surface even though the angle 

of attack Is twice the cone hal.   angle.    This Is  In relalty evidence of 

the fact that the viscous layer Instead of having a large hump on the 

lee side now has a "cusp" at the lee centerllne with a nearly sharp local 

minimum In viscous layer thickness.    The experimentalist have observed 

this behavior of the viscous layer edge and it has been noted in vapor 

screens and pitot surveys taken in turbulent flow on cones in Refs 31, 

33,  and 34  (see Fig.   33 taken from Ref  33).    Also,  comparing the extent 

of the lee side vortices present in tlie laminar region calculation with 

the pitot maps in Refs 31 and 32,  it is apparent that the essential 

size and character of the primary vortices are maintained through 

transition and beyond. 

The differences in the characteristics of  the viscous layer and 

surface pressure distribution with increased Reynolds numbers are 

graphically and pictorially shown in Fig.  33 which is taken from Ref 33. 

The "cusp" viscous layer structure shown in Fig.   33 for Rainbird's 

experimental results has been considered to be primarily a turbulent 

flow regime phenomenon on conical bodies.    However,  the calculation 

made at McElderry's conditions  in the present study demonstrates that 

the "cusp" is present in the viscous layer upstream of transition.    The 

viscous layer structure of Ralnbird shown in Fig.   33 is therefore a 

phenomenon occurring in the laminar flow regime which persists into the 

turbulent regime. 

In summary,   the solution at a location on the cone Just upstream 

of the boundary layer transition location is shown to exhibit features 

previously associated with turbulent flows over conical bodies.    The 

agreement of this solution with experiment is amazingly good when it 
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Is compared conlcally with experimental measurements made far down- 

stream In the turbulent flow regime.  The adequacy of the conical 

symmetry assumption for turbulent flow Is therefore assured If a 

reasonable means can be found to model viscous layer turbulence. 
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V.  Conclusions 

Invlscid computations for hypersonic cone flow have proven 

to be unstable at angles of attack greater than twice the cone 

half angle.  In addition, previously obtained solutions Including 

the effects of viscosity have required Input of experimentally 

obtained data and/or have not been demonstrated for a/6 >2.0. 
c 

In order to resolve these difficulties,  solutions have been 

demonstrated for the complete flow field around sharp cones  In- 

cluding viscous effects.     These solutions were obtained by applying 

a conical symmetry assumption to  the complete Navler-Stokes  equations 

and numerically Integrating the resulting equation set by use of 

MacCormack's  finite difference scheme.     Integrations were performed 

at selected sets of boundary conditions  for which previously pub- 

lished experimental data were available.    The solutions obtained 

were for a Mach number range of  6.05 to 14.2,  a local Reynolds 

number range of  0.4 x 10     to 1.5 x 10  ,  and angles of  attack from 

a/0    - 0.0 to  2.4.     Stability of  the solutions was demonstrated 

through use of a stringent convergence requirement.     A technique 

(normal stress damping)  was developed and used to reduce or  eliminate 

the numerical oscillations which developed during the  integration in 

the vicinity of strong shock waves.    The results of  the Integration 

were compared with the experimental studies of Tracy,   Stetson, and 

McElderry.    The following points are presented concerning the conduct 

of the integration and the comparison with experiment: 

(1)    Agreement with the experimental data of  Tracy was gen- 

erally good.     The major  features of  the experiment   (shock waves. 
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sonic lines, and viscous layers) were present and essentially 

correct In location and magnitude In the results of the Integra- 

tion.  The primary discrepancies noted in the comparison with 

Tracy's data were an approximate 57. difference in surface pres- 

sure near the windward centerline and an error in pltot pres- 

sure in a small region near the lee centerline for the a/6 >_ 2.0 

cases. The latter discrep- cy was concluded to be due to failure 

of the present technique to account for non-conical nose effects. 

Agreement of the results of the integration with the experimental 

data of Stetson was less adequate than was shown to exist with the 

data of Tracy. The agreement with Stetson's surface pressure 

measurements was quite reasonable.  However, the position of the 

lee side shock wave in the results was 27% nearer the cone surface 

at the lee centerline than in the experiment.  This discrepancy was 

concluded to be primarily caused by inability of the present tech- 

nique to model the effective nose blunting existing in the experi- 

ment which resulted from viscous effects at this high Mach number 

(14.2). The apparent effect of this nose blunting was much greater 

in extent in Stetson's case (hypersonic similarity parameter, 

X -  3.0) than in Tracy's cases (x ■ 1.0). 

(2) The present technique tamoves the angle of attack limita- 

tions present in inviscid calculations. The instabilities associated 

with the point where the high strength lee side Imbedded shock wave 

reaches the surface are removed by the Inclusion of viscous effects 

in the physical modeling of the flow field. 

(3) The adequacy of the conical symmetry assumption is indi- 

cated for the turbulent regime on conical bodies. A solution obtained 
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just prior to the beginning of boundary layer transition at the experi- 

mental conditions of McElderry agrees well with experiment when conl- 

cally projected far Into the turbulent regime. 

(4)  Normal stress damping Is shown to provide a physically 

based means to provide the necessary control of spurious numerical 

oscillations around shock waves without additional computer time.  It 

is also very effective for control of overexpansion and for control 

of starting transients due to Ill-suited initial conditions. 

In summary, the present technique was shown to be a viable 

means of calculating the flow over cones at angle of attack including 

viscous effects. Agreement with experiment was quite good for X £ 1 

with some discrepancy encountered in the lee side viscous layer as X 

Increased.  Angle of attack limitations encountered with the inviscid 

equations were removed.  This technique should therefore be considered 

as an alternative to the use of the inviscid flow equations for future 

calculations of flow over conical bodies. 
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VI.  Recommendations 

Three primary directions are seen for extension of the work 

presented In this report. The first Is the confirmation of the tech- 

nique for more general conical configurations, such as delta wings. 

The second Is the extension of the Reynolds number range for which the 

calculations can be accomplished through Inclusion of a turbulence 

model In the formulation of the equation set. *v« third Is the Inves- 

tigation of the adequacy of the conical symmetry assumption for lower 

supersonic Mach numbers. 

A further Item pointed out by this study Is the need for re- 

examination by the experimentalist of the techniques used for collection 

of experimental data. As the numerical computation capability Improves, 

heretofore undetected discrepancies In data collection techniques may 

be pointed out. An example Is the underestimation of surface pressure 

on the windward side of the cone in the present study. This under- 

estimation in past inviscid studies was attributed to failure to Include 

viscous effects. However, two studies (the present study and Ref 16) 

are available which exhibit this underestimation even though viscous 

effects were Included in the calculated results. A third study (Ref 14) 

matched the windward surface pressure for Tracy's data only at a much 

lower Reynolds number than existed In the data. This is considered to 

be a clear indication that the details of the use of surface pressure 

taps where thin hypersonic boundary layers exist should be further 

studied. This also points out the need for cooperation and collabora- 

tion between the experimentalist and the numericist in the effort to 

Improve overall aerodynamic prediction techniques. 
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APPENDIX A 

Boundary Conditions 

The solution of  the Navler-Stokes equations by numerical methods 

Is In reality a boundary value problem subject to the same require- 

ments and constraints as the solution of the set by analytic tech- 

niques.    However, the mathematical theory concerning existence and 

uniqueness of solutions for this equation set has not been resolved 

(Ref 35).    This statement Is especially true for compressible flows. 

The only course then open to the engineer Is to presume a well posed 

problem exists when the known physically derived auxiliary conditions 

are Imposed.     If the Integration of the equation set subject to these 

conditions yields a steady state solution (which of course Is not 

guaranteed),   then experimental results for these name conditions must 

be used to verify that the solution obtained Is Indeed the correct 

one.    When this Is done for several related sets of conditions with 

good results,  confidence In the adequacy of the solution technique 

for use where experimental results are not available Is Increased. 

However, the user of the technique for this purpose must always take 

care to examine the solutions obtained for non-physical features, as 

It Is never possible to completely define Initially the limits of 

usefulness of an equation set In any meaningful sense.    The above pro- 

cedure was followed  In this study.    The rest of this appendix will 

present the auxiliary conditions used and the manner In which they 

were imposed. 

Examination of Fig. 2  reveals that the finite difference mesh is 

a spherical surface with the inner edge bounded by the cone and the 
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outer edge free.    The mesh shown Is 360    clrcumferentlally In extent. 

Since two known lines of  symmetry exist at <j) » 0    and (j) - 180 ,  the 

extent of the surface can be readily reduced by one-half.    This 

reduction can be made without Increase in the number of boundary 

values necessary to the calculation by specifying an additional line of 

mesh points in the 6 direction and at the required value of ({>.    The 

results of each sweep during the integration are then reflected 

symmetrically to these lines about the lines of symmetry.    This causes 

the integration  (at the  line of symmetry)   to perceive that a mirror 

image of the solution Is evolving on the other 180    of the mesh (as it 

would be if the sweep were actually 360 ).     This procedure therefore 

requires no a priori knowledge of the flow quantities at the lines of 

symmetry and implies that the  following conditions are being imposed 

at these lines of symmetry: 

at 4)    -   0°    and    4>    - 180° 

Note that these two conditions 
are  Imposed only at one line 
of symmetry.    They are then 
derivable from the governing 
equations at  the other. 

Two boundaries  therefore  remain which must be dealt with. 

Examination of the  six equations  (the Navler-Stokes equations, 

the continuity and energy equations,  plus the equation of state)  as 

modified reveals that all three velocity components and temperature 

appear as second derivatives In 6 and $ with pressure and density 

appearing as first derivatives in 6 and ({>.    A solution should then be 

obtainable through the specification of two boundary conditions for 
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u "  "oo   (♦) P   *   Poo 

V -  V^   (())) P   "  Poo 

W -  W^   ((f) T  .   ^ 

each of the velocity components and temperature and one each for 

pressure and density.  (In reality, the algebraic equation of state 

eliminates the requirement for specifying both pressure and density.) 

This was done In the present study In the following manner: 

at the cone surface 9 - 8 , 4» ■ 0O-»]80O 
c  T 

u • v ■ w ■ 0 

T - T  (40 
w 

at the outer boundary (physically, the free stream) 

6 - 8 outer, (J) - 0O^180O 

a uniform free 

stream Is assumed 

Note that although the quantities are specified along a line of 

constant 6, the 4) distribution Is completely specified also. It 

should also be noted that the total intenu 1. energy was used In place 

of the temperature as *a dependent variable. The connection Is simply 

V2 
e ■ C T + -r— .  These conditions are now sufficient to allow solution 

v    2 

of the problem. 

Since pressure and density at the cone surface remain free (and 

Indeed must do so to prevent overspeclflcatlon of the boundary condi- 

tions) , they must be determined during the Integration process. This 

was done In the present study by analytically evaluating the 9 

momentum equation at the cone surface conditions. The resulting 

equation In non-dimensionalized form solved for -rlr Is: 
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36      k sind 
4 r cosö   .     .  a 
3    -Ri" + 8ine 3evRe; Jse 

8 8ln9 3u      4 slnS 32v     2^ iL/JL ^ 
3    Re    36      3 Re      362 " 3 ae^Re 3*; 

S^Re 36; 

This equation Is approximated by one sided second order accurate 

finite differences about the surface mesh point of Interest.    The 

resulting difference equation Is solved for the surface pressure, the 

only quantity In the equation which has not been updated when the 

equation Is applied after a sweep through the mesh of either the 

predictor or the corrector.    This equation can be represented by: 

_1 - 2A9 , , w 4    1 11 
Pj,n "      3ksln6 f (u'v'w) + 3 pj+l.n " 3 »j+2,n 

with J  ■ 1,  and 1 and n Indicating time level and <p position In the 

mesh respectively.     The density at  the surface Is  found via the equa- 

tion of state and all flow quantities are then known or have been 

determined at the cone surface. 

To complete the specification of the auxiliary conditions. 

Initial values of the flow quantities are required at all points In 

the mesh In order to begin the calculation.    In the present study, 

this was done by setting the mesh to free stream conditions Including 

the mesh point above the cone surface with true surface boundary condi- 

tions plus free stream pressure and density Imposed at the cone surface. 

The calculation was  then begun which resulted In a so called "Impulsive" 

start up.    (I.e.,  the cone Is brought from rest to free stream velocity 

Instantaneously).    The outer and Inner boundary conditions were main- 

tained throughout the calculation. 
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In summary, a means of reducing the field of calculation by half 

through symmetry has been discussed.    The requirements for boundary 

conditions were shown and the manner In which these requirements were 

satisfied In the present study was presented.    The use of the 6 

momentum equation to obtain the cone surface pressure was demonstrated 

and the Initial conditions utilized were also discussed. 
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APPENDIX B 

Normal Stress Damping 

Pravlous studies (Refs 13, 25) using shock capturing finite 

difference techniques have encountered oscillations In the vicinity of 

strong shock waves which can cause solution Instabilities. To overcome 

this difficulty, artificial terms have been added to the governing 

equations to provide necessary damping. In the present study, using 

the viscous equations and shock capturing, oscillations were again 

encountered. This Indicated that the natural viscous terms are Inade- 

quate to overcome the series truncation error at the existing mesh 

spacing.  To damp these oscillations without additional programming 

complexity, the normal stress terms (which are in general large only 

near shock waves) were altered by increasing the second coefficient of 

viscosity (X>^ - 2/3y) . This resulted in elimination or reduction of 

the oscillations where desired.  In addition to improving the shock 

structure, it was found that normal stress damping was extremely 

effective in removing instabilities caused by starting transients which 

result from ill-suited initial conditions. The details of implementa- 

tion and conditions for proper use of this technique are given below. 

As shown in Eq (4), the normal stress terms contain: 

an - X^ (V.V) - - fRe[ 2u sine + ^(v sine) + g ]   (B1) 

Normal stress damping results when 2u sind is removed and the 

remainder of the term Is multiplied by an empirically determined factor 

ß, where B  is negative (i.e. ßa ). (A positive ß does not produce the n 

damping effect and makes the calculation unstable except near ß « 1), 
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The damping  terms occur both in the energy equation and In  the H' 

matrix resulting from the coordinate transformation.    It was found that 

the most accurate solutions resulted from use of the damping multiplier 

In the derivative term only (F. or G.)  of the momentum equation most 

nearly normal to the shock wave for which damping Is desired.    Inclu- 

sion of the multiplier In the H" matrix or the energy equation produced 

some displacement of the solution.    Also,  It should be noted that In 

the steady limit, 

o   - f(7.^)  - f(V'^) (B2) 
n p 

(through use of the continuity equation) .    This Implies that normal 

stress damping cannot be used in the vicinity of compressible flow 

boundary layers without regard for possible changes In the density 

gradients. 

An example of the use of normal stress damping Is given In Fig. 

34 for axlsymmetrlc cone flow as calculated by the technique of this 

report.    The plot Is a comparison of the calculated static pressure In 

the 6 direction at Tracy's free stream conditions with and without the 

Inclusion of normal stress damping.    In  this case the damping Is 

tailored In the 6 direction by: 

P 
ff " 1 '  ^ A1 "  (fc> A2 (B3) 

where the pressure ratio multipliers were empirically determined to be 

Al « 9 and A2 - 2.    The use of the damping multiplier (Fig.  34)  resulted 

In the reduction of the numerical oscillations near the shock wave. 

Although a small offset In pressure occurs outside the boundary 

laye: ,  the  surface pressure and shock position do not change 
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appreciably when damping Is applied. 

For Tracy's cases, the damping multiplier ß was unity over the 

lee 40 ((^ - 1A0 - 180 ) of the flow, where viscous effects predomi- 

nate. It was then varied smoothly around the cone from $ - 140 In 

accord with the equation: 

B . - 1 - ß' 
<P 

sU - PsU - 140 
,»1 

(B4) 
Ps|(j) - 0° - PsU - 140 

where s Indicates body surface values and 3' was empirically varied 

from 15 (a - 8°) to 130 (a ■ 24°). ß was constant in the 9 direction. 

For Stetson's case, the very strong lee tide expansion during 

start up made it necessary to use normal stress damping there. 

However, the damping in this region was removed after the solution 

development was sufficient for the expansion to become less strong. 

For the rest of the field (4» * 0 -»-140 ), a more sophisticated tailoring 

of the damping multiplier was used: 

?s\t  "P8U - 140° 

col 

8 6.* ■ ! - P8U - 0° - Ps|(j) - 140* 

co2 

r P k 
I* - 140 

pU.e 
(B5) 

The value of col was 1.6 and of co2 was 1.1. This equation was based 

on experiments with the use of normal stress damping which showed that 

the effects could be improved by tailoring according to the local 

value of static pressure. An improvement was noted in the damping 

effect, but it was found that this equation did not always increase 

the magnitude of ß quickly enough during initial start up. This was 

overcome by using a high initial magnitude of ß for approximately the 
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first 100 time steps of the run.  The above equation was used for 

HcElderry's case also. However, the value of ß necessary on the lee 

side was more negative than the output of the above equation. The high 

initial magnitude was therefore used everywhere in the flow field. 

In order that others who use normal stress damping may benefit 

from experience gained in the present study, the following observations 

and rules concerning this technique are offered: 

(1) The most valuable and recommended use of normal stress damping 

is to reduce starting transients from ill suited initial conditions. No 

permanent history of the use of damping for this purpose is seen in the 

flow after the removal of the damping and subsequent convergence. 

(2) Normal stress damping has been used to allow capturing of 

shock waves with P2/P1 as high as 32. The only practical limit to 

shock strength which can be captured through use of this technique 

appears to be number of mesh points available for the smearing to 

take place over. 

(3) Tailoring of the damping based on local static pressure was 

found to give reasonable results. Tailoring based on other quantities 

(such as temperature) gave unnecessary offset in the viscous layer. 

(4) Large shifts of surface pressure or of static pressure behind 

shocks when damping is applied usually Indicate that the magnitude of 

ß is too high in that locale. 

(5) The best results are obtained behind the shock wave when 

some oscillations are allowed to remain in the free stream. 

(6) Care must be taken to insure that the viscous stability limit 

is satisfied with ß included in the manner shown in Appendix C. 

(7) The items noted below are observed to cause undue displacement 
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of the solution at high values cf ß: 

(a) Inclusion of the ß multiplier in terms resulting from 

coordinate transformations (i.e., the u matrix). 

(b) Inclusion of ß in the energy equation. 

The above observations and rules should not be considered as axiomatic 

but are offered as guides for the use of this technique in other 

compresssible flow problems. 

Normal stress damping is a physically based technique which has 

proven beneficial in damping out starting transients and smoothing 

numerical oscillations in the vicinity of shock waves. The ß contouring 

equations and levels used for the various cases were presented. Rules 

and observations were also given co guide future use of this technique. 
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APPENDIX C 

Stability Criteria 

In order to maximize computational efficiency,      criteria should 

be used to determine the maximum permissible time step (At) as the 

Integration progresses.    As noted in Section III, criteria were    not 

used during the calculations presented elsewhere in this report. 

Instead, At was fixed during each complete integration at Tracy's condi- 

tions and was fixed for the later parts of the integrations at Stetson's 

and McElderry's conditions.    The value    at which At was fixed    was at 

first determined by increasing At until instability was encountered 

during the starting transient phase of the run.    The run could then be 

continued to convergence by reducing At 10% to 15Z from the unstable 

value.    As experience was gained with the technique (and more was 

learned about the effect of normal stress damping on stability), it was 

found that for Tracy's conditions,  stable values of At could be set 

initially without resorting to trial and error.    These values were in 

general 0.6A6 to 0.7A6.    The above procedure did not, however,  allow 

for any possible increase in allowable At after the large transient phase 

of the calculation.    Difficulty in determining allowable At was also 

encountered for Stetsoifs and McElderry's conditions due to use of normal 

stress damping in predominately viscous regions.    To correct these two 

deficiences,      stability criteria for use during the integration were 

postulated and confirmed by a repeat of previous calculations.    The 

remainder of this appendix will present this procedure and the observed 

changes in computational efficiency. 

I 
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A complete stability analysis for MacCormack's method as applied 

to the Navler-Stokes equations has not been accomplished.    However,  use- 

ful estimates of allowable step sizes can be made through the use of 

linear theory and physical arguments.    Claiming that the physical propa- 

gation of Information (I.e. fluid signals)  cannot outstrip the numerical 

propagation results In the following Courant-Frledrlch-Lewy (CFL) 

condition (Ref 36): 

.„ .    1^0  at f1 <.    • j— 
Iv|_ + h*| + J>e2 -»■ (sine A»)2] ^ ■cfl 
ll  

AS "r    sine A* ^ ^    Ae(slne A*) (Cl) 

This expression essentially determines allowable At In regions where 

viscous effects are negligible.    The remaining task Is to determine the 

effects on stability of the stress terms and of normal stress damping. 

The maximum stable At In viscous regions Is normally a function of 

the smallest physical step size there,    in the present study Ae«A^ 

for all cases calculated.    This Implied that the stress terms in the 6 

coordinate direction were the main determinant of allowable At and there- 

fore that the stability analysis due to the stress terms was essentially 

a one dimensional problem.    In the case of finite difference operator 

time splitting,   the stability analysis also has been shown to be a one 

dimensional problem (Ref    25).    An analysis similar to that of Ref 25 

was therefore accomplished and is presented here. 

Equation (2)  is first written in non-conservation form: 

[L][Z] t    + [MJ[Z] e    + [N][Z] #    + [W][Z]  ee    + [Q][Z]  ^ 
r 

+ 010] e* +0][z] ^  +[■'] -o (C2) 
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where  [ Z] 

and the subscripts indicate differentiation. 

The remaining matrices will be defined as they are used. The 

final equation results when [LJ   is found and the coefficient matrices 

[L ] ~ [Mj , etc. are formed By declaring the coefficient matrices 

to be locally constant, it can be shown that (Ref 37, 38) when each 

dimension is considered separately V -r|r <, 1.0 (inviscid effect) and 

v -T^J <^ — (viscous effect). The symbol v is in each case the maximum 

eigenvalue of the appropriate coefficient matrix (for example [ L ] 

[M] ). Equation (Cl) above accounts for the inviscid effect on stabil- 

ity so that it is only necessary to consider the second Inequality 

and obtain values of v for the coefficient matrices of the second deriv- 

ative terms involving 6 in Eq (C2). 

-1 The matrix [L]        [w ] is as follows: 

[ir^w] 0 

0 

0 

■    2YP 
2p2RePr 

0 

1 
pRe 

0 

0 

0 

0 

0  ii 
2 -f y " 

pRe 

0 

0 

0 

0 

0 

1 
pRe 

0 

0 

0 

0 

0 

pRe Pr 
(C3) 

6X The maximum eigenvalues of this matrix are Y/(pRe Pr) and (2 +—) /(pRe) 

The second eigenvalue is included due to the undetermined (and sometimes 

large) value of the damping coefficient ß. 
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Arguments must now be made regarding contribution of the 6(J) and $6 

cross derivative terms In the equation set. The gofl Is to demonstrate 

that the elgnevalues offV] [Vjgive a minimum At, so that the 6()> and (^6 

terms can be dropped from consideration. First assume that the contri- 

bution of these terns Is v -TTT <_ —. This effectively Increases the 

contribution (results In a lower At) of these terms since A9«A()). As 

an example, the matrix[L]  [x]is 

[L]'1^] -  0    0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 
pRe 

Re 

0 

0 

0 

0 

0 

0 

0 (C4) 

The maximum eigenvalue of this matrix Is (ßX/y) /(pRe) and is clearly 

less than the eigenvalue due to normal stress damping of the[L] [w] 

matrix.  Since the[L]  [sjmatrix is similar, it can be concluded that 

sufficient information is known to postulate a complete stability cri- 

teria. By substituting the eigenvalues into the appropriate stability 

criteria and labeling each resulting At as to its source, the following 

complete stability criteria is postulated: 

At - m min (At -,, At  ., At . ) 
cfl   nsd   vise 

(C5) 

where m £ 1.0, At ,. ■ min of results from Eq. (Cl) 

A-      4    pRe AB2 
Atnsd ■ m±n  2 | (2-hßX)| 

At ,  - min i*eIlLMi 
vise       2 Y 

where min implies the minimum value of the quantity found by searching 

all mesh points in the flow field. The factor m is theoretically 
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limited to a value of 1.0. However, uncertainties and approximations 

In the stability analysis sometimes result In an actual maximum value 

of m greater or less than 1.0. 

The above procedure was tested at a - 0 for Tracy's conditions 

with good results. However, the real Issue was whether the criteria 

would be adequate for high a with the use of large amounts of normal 

stress damping. Therefore the a ■ 20 case at Tracy's conditions was 

repeated with the above criteria for determining At In continuous use. 

Use of the criteria reduced the number of time steps necessary for 

convergence to the fifth significant digit from 1700 to 960. The 

factor m for this run was 1.0 for the first 300 time steps and 1.2 

tlereafter.  Instability of the solution occurred for m ■ 1.4. The 

values of the normal stress damping coefficient (ß) were comparable 

with those used In the original run. In order to Insure that the 

viscous stability limit would not be violated when using very high 

values of normal stress damping, a run was made at Tracy's conditions 

and a ■ 0 with 0 m  4000. This set of conditions was unstable at a 

value of At determined from Eq (Cl). However Vie use of the above 

criteria reduced the value of At sufficiently to allow the run to be 

continued (although at a very low At). 

In summary,  stability criteria were postulated and confirmed which 

reduced the number of time steps required for convergence by 44% in an 

example calculation. The procedure was also shown to account for the 

effects of normal stress damping on stability. 
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